CINATRINS, A NOVEL FAMILY OF PHOSPHOLIPASE A₂ INHIBITORS

II. BIOLOGICAL ACTIVITIES

KAZUSHIGE TANAKA, HIROSHI ITAZAKI and TADASHI YOSHIDA*

Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

(Received for publication May 13, 1991)

Cinatrins A, B and C₃ inhibited phospholipase A₂ purified from rat platelets in a dose-dependent manner. Cinatrin C₃, the most potent component (IC₅₀ 70 μ M), was noncompetitive with a Ki value of 36 μ M. Cinatrins B and C₃ also inhibited both porcine pancreas and Naja naja venom phospholipase A₂. Inhibition of rat platelet phospholipase A₂ by cinatrin C₃ was independent of Ca²⁺ and substrate concentration. Comparison with duramycin, another phospholipase A₂ inhibitor, displayed inhibition dependent on substrate concentration when phosphalidylethanolamine was the substrate. These results indicate that the inhibition of phospholipase A₂ by cinatrin C₃ may result from direct interaction with the enzyme.

Phospholipase A_2 [EC 3.1.1.4] (PLA₂) is a lipolytic enzyme that specifically hydrolyzes the 2-acyl position of a glycerophospholipid. PLA₂ plays a crucial role in the rate-limiting step in the biosynthesis of pro-inflammatory eicosanoids (prostaglandins, leukotrienes, thromboxanes)¹). It is becoming increasingly obvious that lysosomal and granular PLA₂s secreted into interstitial, intraarticular, or intravascular compartments are involved in the pathogenesis of inflammatory processes²). Recently, secretory PLA₂ was purified from a medium of rat platelets stimulated with thrombin³). By using this enzyme, we searched for a new PLA₂ inhibitor from culture filtrates of microorganisms and found cinatrins A, B, C₁, C₂ and C₃. Their structures are reported in our previous paper⁴). The present study was done to evaluate the effects of cinatrins on the lipolytic activity of PLA₂ and to clarify their other biological properties.

Materials and Methods

Cinatrins (A, B, C₁, C₂ and C₃) and their derivatives (methyl esters and seco acids) were prepared as described in a previous paper⁴). Duramycin was prepared as previously described⁵). L- α -Phosphatidylethanolamine (from egg yolk), PLA₂ from *Naja naja* venom and porcine pancreas were purchased from Sigma. 1-Palmitoyl-2-[1-¹⁴C]linoleoylphosphatidylethanolamine (59 mCi/mmol) was purchased from Amersham Corp. PLA₂ released from thrombin-stimulated rat platelets³) was prepared by immunoaffinity chromatography^{6,7}). All PLA₂s used for these studies were homogeneous as confirmed by SDS-polyacrylamide gel electrophoresis. All other reagents were analytical grade or better.

Phospholipase A₂ Assay

The substrate, $[^{14}C]$ phosphatidylethanolamine aqueous suspension, was prepared by diluting 1-palmitoyl-2- $[1-^{14}C]$ linoleoylphosphatidylethanolamine with L- α -phosphatidylethanolamine for a specific activity of 2,000 dpm/nmol. The lipids were then dried under N₂ and suspended in deionized water with a probe sonicater⁸). The standard reaction mixtures in a total volume of 250 μ l contained Tris - HCl buffer (100 mM, pH 7.4), CaCl₂ (3 mM), 40 μ M [¹⁴C]phosphatidylethanolamine and enzyme. The reaction was started by addition of the enzyme solution. The amount of PLA₂ was adjusted to optimize the linear kinetics for quantitation; *i.e.*, hydrolysis of the substrate was less than 20% in all experiments. Following incubation at 37°C for 20 minutes, the reactions were terminated by addition of 1.25 ml of DOLE's reagent⁹).

THE JOURNAL OF ANTIBIOTICS

To determine the release of ¹⁴C-label from the phospholipid substrate, free fatty acid was extracted by the method of NATORI *et al.*⁸⁾, and counted in 7 ml of Liquifluor (Du Pont, New England Nuclear). Before the reaction was started, inhibitor was added to the assay tube. Inhibition is expressed as a %; with enzyme control as 100% reaction *i.e.* 0% inhibition. All data are the average of at least duplicate determinations corrected for none enzymatic hydrolysis (0.5% or less in all experiments). Both cinatrins and their seco acid derivatives were dissolved in Tris-HCl buffer (100 mM, pH 7.4). Cinatrin methyl ester derivatives and duramycin were added to assay tubes as DMSO solutions (2% of final volume), using a DMSO-enzyme control. Control experiments showed that DMSO at concentrations up to 2% had no effect on enzymatic activities. IC₅₀ values were determined graphically from plots of percent inhibition versus log concentration of inhibitors.

Results

Inhibition of Various PLA₂ by Cinatrins

The effects of cinatrins A, B, C_1 , C_2 and C_3 at the concentrations from 30 to $800 \,\mu M$ on rat platelet PLA₂ are shown in Fig. 1. Cinatrins A, B, C_2 and C_3 inhibited PLA₂ activity in a dose-dependent manner, while cinatrin C_1 showed no inhibition in this concentration range. The dose

required for 50% inhibition IC₅₀ were as follows; 320 μ M for A, 120 μ M for B, 800 μ M for C₂ and 70 μ M for C₃ (Table 1). Thus, cinatrin C₃ had the maximal inhibitory activity among the members against rat platelet PLA₂.

Fig. 1. Inhibition of rat platelet phospholipase A_2 by cinatrins.

Standard reaction mixtures contained the indicated amounts of cinatrins A (\triangle), B (\square), C₁ (\blacksquare), C₂ (\bigcirc) and C₃ (\bullet). Inhibition is expressed as the % of the enzyme control.

All data are the average of at least duplicate determinations corrected for none enzymatic hydrolysis.

Fig. 2. Noncompetitive inhibition of rat platelet phospholipase A_2 by cinatrin C_3 .

Double reciprocal plot of rat platelet PLA₂ activity toward phosphatidylethanolamine in the presence of $(140 \, \mu M, \, \odot)$ or absence (\bullet) of cinatrin C₃.

Standard assay conditions were employed and the lines were drawn on the basis of regression analysis.

Table 1. Inhibition of various phospholipase A_2s by cinatrins.

	IC_{50} (μ M) on PLA ₂ from			
Cinatrin	Rat platelet	<i>Naja naja</i> venom	Porcine pancreas	
Α	320	430	>800	
В	120	110	460	
C_1	> 800	$> 800^{a}$	> 800	
C_2	800	120	> 800	
C_3	70	140	390	

Cinatrin C_1 exhibited 45% inhibition at 800 μ M.

A double reciprocal Lineweaver-Burk plot of cinatrin C_3 is shown in Fig. 2. Cinatrin C_3 inhibited rat platelet PLA₂ activity noncompetitively with a Ki of $36 \,\mu\text{M}$.

Because cinatrins A, B, C_1 , C_2 and C_3 exhibited differential potency in inhibiting on rat platelet PLA₂, we also investigated their effects on Naja naja venom and porcine pancreas PLA₂ to determine whether these characteristics are common to various PLA₂s. As shown in Table 1, all the PLA₂ tested were inhibited by cinatrins B and C₃, but the IC₅₀ values varied with the enzyme tested: rat platelet $\geq Naja naja$ venom > porcine pancreas PLA2. Similar results were obtained with cinatrin A, but it was less potent than cinatrins B and C3. Cinatrin C2 preferentially inhibited Naja naja venom PLA2. Cinatrin C1 showed little ability to inhibit these PLA₂s over this range of concentration.

Effect of Substrate and Ca²⁺ Concentration on the Inhibition of

Rat Platelet PLA₂ by Cinatrin C₃ and Duramycin

To survey the mechanism of inhibition by cinatrins on rat platelet PLA_2 , we examined the extent of inhibition by cinatrin C_3 as a function of substrate concentration. PLA₂ activity in the presence or absence of cinatrin C_3 increased linearly with substrate concentration (data not shown). Fig. 3(A) shows that the % inhibition by cinatrin C3 remained constant over the entire range of substrate concentrations. Thus, the inhibition of rat platelet PLA_2 by cinatrin C_3 is independent of the substrate concentration. Recently, the revised structure of duramycin, a polypeptide antibiotic¹⁰⁾, was reported⁵⁾ and it was identified as a PLA₂ inhibitor¹¹). In addition, duramycin has the ability to interact specifically with two lipids: phosphatidylethanolamine and monogalactosyl-diacylglycerol¹²). We examined the extent of inhibition by duramycin as a function of substrate concentration. It is apparent from Fig. 3(B) that the extent of the inhibition by duramycin is dependent on the substrate concentration, since the inhibition was substantially relieved or even abolished at higher substrate concentrations. The inhibitory potency of cinatrin C3 on rat platelet PLA₂ was not affected by the Ca²⁺ concentration $(3 \sim 30 \text{ mM})$ in the reaction mixture (data not shown).

Fig. 3. Effects of substrate concentrations on the inhibition of rat platelet phospholipase A2 by cinatrin C_3 (A) and duramycin (B).

ōн

ōн

Inhibition of Rat Platelet PLA₂ by **Cinatrin Derivatives**

To explore in more detail the inhibitory mechanism of the cinatrins on PLA2, we examined the effect of cinatrin derivatives (Fig. 4) on rat platelet PLA₂ (Table 2). Cinatrin C1 (3a) increased its inhibitory activity on methylation (3b), while the activities of cinatrins A, B, C₂ and C₃ were not markedly altered.

Table 2. Inhibition of rat platelet phospholipase A_2 by cinatrin derivatives.

Cinatrin	IC ₅₀ (µм)			
Cillatini	Intact	Methyl ester	Seco acid	
А	320	220	120	
В	120	220	65	
C_1	> 800	140	n.d.	
C ₂	800	750	38	
C ₃	70	130	60	

n.d.: Not done (see text).

We also examined the cinatrin seco acids, in which the spiro- γ -dilactones of A (1a) and B (2a), and the γ -lactones of C₁ (3a), C₂ (4a) and C₃ (5a) were opened (the structures of cinatrin C₁ seco acid (3c) and cinatrin C₃ seco acid (5c) are identical). All cinatrin seco acid derivatives exhibited more potent inhibitory activity than the original compounds. About 20 times stronger inhibition was noted for cinatrin C₂ seco acid (4c) than cinatrin C₂ (4a).

Discussion

Our data demonstrated that, although the chemical structures of cinatrins A, B, C_1 , C_2 and C_3 are similar, their inhibition activities against rat platelet PLA₂ were different. The most potent activity came from cinatrin C₃ (IC₅₀ 70 μ M), which was found to be a noncompetitive inhibitor with a Ki of 36 μ M. Some alkaloids and non-steroidal anti-inflammatory agents displace Ca^{2+} and thus the inhibition by some of these agents appear to be dependent on Ca^{2+} concentration¹³. However, we found the inhibition by cinatrin C₃ to be independent of the Ca²⁺ ion content. Many non-specific PLA₂ inhibitors have been thought to affect the "quality of the interface" by modifying phospholipid bilayer properties that render phospholipid inaccessible to the enzyme¹⁴). For example, DAVIDSON et al.¹⁵ found that lipocortin, which is thought to be an important steroid-inducible inhibitor, inhibits PLA_2 by sequestering the phospholipid substrate; the inhibition can be overcome by high phospholipid substrate concentrations. In the experiments presented herein, the extent of inhibition by duramycin, recently reported as a PLA₂ inhibitor¹¹), was dependent on the substrate concentration. Since NAVARRO et al. reported that duramycin specifically interacts with phosphatidylethanolamine¹²), its activity is probably due to direct interaction with the substrate of phosphatidylethanolamine. On the other hand, the inhibition of rat platelet PLA₂ by cinatrin C_3 was independent of the substrate concentration. This evidence strongly suggests that the inhibition of rat platelet PLA₂ by cinatrin C₃ is due to direct interaction with the enzyme.

Since PLA₂ is believed to be the key enzyme responsible for arachidonic acid release¹, it should be investigated whether cinatrin C₃ can inhibit this release from the cell membrane. However, cinatrin C₃ has been shown to cause hemolysis of human erythrocytes (ED₅₀ 290 μ M) as well as loss of cell viability (cytotoxicity, ED₅₀ 160 μ M) (data not shown).

BALLOU et al.¹⁶ found that unsaturated fatty acids inhibit human platelet PLA₂, and the methylation of unsaturated fatty acids caused complete loss of inhibitory activity. Our finding that methylation of cinatrins did not affect the inhibitory activity suggests the mechanism of PLA₂ inhibition by cinatrins to be different from that of unsaturated fatty acids. Manoalide, a sesterterpenoid PLA₂ inhibitor isolated from marine sponge, contains two cyclic moieties; a six-membered hemiacetal ring and a γ -lactone ring^{17,18}). DEEMS et al.¹⁹ reported that the γ -lactone ring may play an important role in manoalide inhibition, although this does not offer a complete explanation of its activity. Cinatrins also contain a γ -lactone ring, and we examined their derived seco acid, which are derived by opening this ring. All cinatrin seco acids showed similar IC₅₀ values. Although we do not know whether the mechanisms of PLA₂ inhibition by cinatrins and cinatrin seco acids are the same, our finding suggests that the γ -lactone ring may play a significant role in the inhibitory activity of the cinatrin family.

In conclusion, although cinatrins are toxic to cells, they can serve as valuable tools for revealing the structure-function relationships of extracellular PLA_2 .

Acknowledgment

We wish to thank Professor KEIZO INOUE, University of Tokyo, for the generous gifts of the anti-rat platelet derived PLA₂ monoclonal antibody. Helpful discussions with Drs. HITOSHI ARITA and TOHRU NAKANO, Shionogi Research Laboratories, are gratefully acknowledged.

References

2) VADAS, P. & W. PRUZANSKI: Biology of disease: role of secretory phospholipase A₂ in the pathobiology of disease.

¹⁾ VAN DEN BOSCH, H.: Intracellular phospholipases A. Biochim. Biophys. Acta 604: 191 ~ 246, 1980

Lab. Invest. 55: 391~404, 1986

- HORIGOME, K.; M. HAYAKAWA, K. INOUE & S. NOJIMA: Purification and characterization of phospholipase A₂ released from rat platelets. J. Biochem. 101: 625~631, 1987
- 4) ITAZAKI, H.; K. NAGASHIMA, Y. KAWAMURA, K. MATSUMOTO, H. NAKAI & Y. TERUI: Cinatrins, a novel family of phospholipase A₂ inhibitors. I. Taxonomy and fermentation of the producing culture; isolation and structures of cinatrins. J. Antibiotics 45: 38~49, 1992
- HAYASHI, F.; K. NAGASHIMA, Y. TERUI, Y. KAWAMURA, K. MATSUMOTO & H. ITAZAKI: The structure of PA48009: The revised structure of duramycin. J. Antibiotics 43: 1421~1430, 1990
- MURAKAMI, M.; T. KOBAYASHI, M. UMEDA, I. KUDO & K. INOUE: Monoclonal antibodies against rat platelet phospholipase A₂. J. Biochem. 104: 884~888, 1988
- MIZUSHIMA, H.; I. KUDO, K. HORIGOME, M. MURAKAMI, M. HAYAKAWA, D. K. KIM, E. KONDO, M. TOMITA & K. INOUE: Purification of rabbit platelet secretory phospholipase A₂ and its characteristics. J. Biochem. 105: 520~525, 1989
- NATORI, Y.; K. KARASAWA, H. ARAI, Y. TAMORI-NATORI & S. NOJIMA: Partial purification and properties of phospholipase A₂ from rat liver mitochondria. J. Biochem. 93: 631~637, 1983
- DOLE, V. P. & H. MEINERTZ: Microdetermination of long-chain fatty acids in plasma and tissues. J. Biol. Chem. 235: 2595~2599, 1960
- SHOTWELL, O. L.; F. H. STODOLA, W. R. MICHAEL, L. A. LINDENFELSER, R. G. DWORSCHACK & T. G. PRIDHAM: Antibiotics against plant disease. III. Duramycin, a new antibiotic from *Streptomyces cinnamomeus* forma azacoluta. J. Am. Chem. Soc. 80: 3912~3915, 1958
- 11) FREDENHAGEN, A.; G. FENDRICH, F. MÄRKI, W. MÄRKI, J. GRUNER, F. RASCHOORF & H. H. PETER: Duramycins B and C, two new lanthionine containing antibiotics as inhibitors of phospholipase A₂. Structural revision of duramycin and cinnamycin. J. Antibiotics 43: 1403~1412, 1990
- 12) NAVARRO, J.; J. CHABOT, K. SHERRILL, R. ANEJA, S. A. ZAHLER & E. RACKER: Interaction of duramycin with artificial and natural membranes. Biochemistry 24: 4645~4650, 1985
- 13) FRANSON, R. C.; D. EISEN, R. JESSE & C. LANNI: Inhibition of highly purified mammalian phospholipase A₂ by non-steroidal antiinflammatory agents. Biochem. J. 186: 633~636, 1980
- 14) FAWZY, A. A.; B. S. VISHWANATH & R. C. FRANSON: Inhibition of human non-pancreatic phospholipase A₂ by retinoids and flavonoids. Mechanism of action. Agents Actions 25: 394~400, 1988
- DAVIDSON, F. F.; E. A. DENNIS, M. POWELL & J. R. GLENNEY, Jr.: Inhibition of phospholipase A₂ by "lipocortins" and calpactins. J. Biol. Chem. 262: 1698~1705, 1987
- BALLOU, L. R. & W. Y. CHEUNG: Inhibition of human platelet phospholipase A₂ by unsaturated fatty acids. Proc. Natl. Acad. Sci. U.S.A. 82: 371~375, 1985
- 17) DE SILVA, E. D. & P. J. SCHEUER: Manoalide, an antibiotic sesterterpenoid from the marine sponge Luffariella variabilis (Polejaeff). Tetrahedron Lett. 21: 1611~1614, 1980
- LOMBARDO, D. & E. A. DENNIS: Cobra venom phospholipase A₂ inhibition by manoalide. J. Biol. Chem. 260: 7234~7240, 1985
- 19) DEEMS, R. A.; D. LOMBARDO, B. P. MORGAN, E. D. MIHELICH & E. A. DENNIS: The inhibition of phospholipase A₂ by manoalide and manoalide analogues. Biochim. Biophys. Acta 917: 258~268, 1987